
M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 1

INHERITANCE-EXTENDING CLASSES

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 2

Ques: What does inheritance mean? When do we use protected visibility specifier to a class
member?

OR
How do you inherit private member into derive class? Explain with example.

Ans:

The class whose properties are inherited by other class is called the Parent or Base or Super class.

And, the class, which inherits properties of other class, is called Child or Derived or Sub class.

NOTE: All members of a class except Private are inherited.

Purpose of Inheritance

1. Code Reusability

2. Method Overriding (Hence, Runtime Polymorphism.)

3. Use of Virtual Keyword

Basic Syntax of Inheritance

While defining a derived-class like this, the base-class must be already defined or at least declared

before the base-class declaration.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 3

Visibility (Access) Mode is used to specify, the mode in which the properties of base-class will be

inherited into derived-class, public, private or protected. The default visibility mode is private.

Making a private member inheritable using protected:

A private member of a class cannot be inherited, so it is not available for the derived class.

1. To make a private member inheritable, protected visibility mode is used.

2. A member declared as protected is accessible by the member functions within its class and any
class immediately derived from it. it cannot be accessed by the functions outside these two
classes.

In protected mode inheritance, the public and protected members of Super class become protected

members of Sub class.

Example:

class subclass : protected Superclass

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 4

Example:

Class Base
{
 public:
 int a;
 protected:
 int b;
 private:
 int c;
};

class Derived:private Base
{
 void F1()

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 5

 {
 a = 10; //Allowed
 b = 20; //Allowed
 c = 30; //Private member of base is not Allowed, Compiler Error
 }
};

class Derived2:public Derived
{
 void F2()
 {
 a = 10; //Not Allowed, Compiler Error, a is private member of Derived now
 b = 20; //Not Allowed, Compiler Error, b is private member of Derived now
 c = 30; //Not Allowed, Compiler Error
 }
};

int main()
{
 Derived obj;
 obj.a = 10; //Not Allowed, Compiler Error
 obj.b = 20; //Not Allowed, Compiler Error
 obj.c = 30; //Not Allowed, Compiler Error

}

SOME MORE ON INHERITANCE, CAREFULLY SEE THE QUESTION, IF FOLLOWING ASKED
THEN ONLY WRITE IT.

Ques: What is visibility modifier? List out them and differentiates with proper example.

Inheritance Visibility Mode/Access Specifier

There are 3 visibility Mode for a class in C++. These access specifiers define how the members of the

class can be accessed. C++ supports the following access modifiers:

 Private Modifier

 Protected Modifier

 Public Modifier

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 6

1) Public Inheritance

This is the most used inheritance mode. In this the protected member of super class becomes

protected members of sub class and public becomes public.

 class Subclass : public Superclass

2) Private Inheritance

In private mode, the protected and public members of super class become private members of derived

class.

class Subclass : Superclass // By default its private inheritance

3) Protected Inheritance

In protected mode, the public and protected members of Super class become protected members of

Sub class.

class subclass : protected Superclass

 Own class Derived class main()

Private

Protected

Public

Example:

For this write above program

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 7

Types of Inheritance

In C++, we have 5 different types of Inheritance.

 Single Inheritance

 Multiple Inheritance

 Hierarchical Inheritance

 Multilevel Inheritance

 Hybrid Inheritance

Single Inheritance

In this type of inheritance one derived class inherits from only one base class. It is the most simplest
form of Inheritance.

Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two base classes.

Hierarchical Inheritance

In this type of inheritance, multiple derived classes inherit from a single base class.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 8

Multilevel Inheritance

In this type of inheritance the derived class inherits from a class, which in turn inherits from some other
class. The Super class for one is sub class for the other.

Hybrid Inheritance

Hybrid Inheritance is combination of Hierarchical and Multilevel Inheritance.

Example:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 9

Ques: What is inheritance? Differentiates multiple and multilevel inheritance with example.

Ans: what is inheritance is given above. For difference write definition then diagram then syntax then
example. Prepare this from book.

Ques: What is inheritance? Explain any one inheritance type with example.

Ans: inheritance intro and types given above, write here

Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two base classes.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 10

Example of multiple inheritance:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 11

Output:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 12

Note: Example (program) and syntax of all inheritance types separately given in textbook, so you can
select any one program from it.

Ques: What is ambiguity in hybrid inheritance? How ambiguities remove from compile time?
Explain with example.

OR

What is inheritance ? When ambiguity occurs in hybrid inheritance. What are solutions to avoid
ambiguity.

Ans: Hybrid Inheritance is combination of Hierarchical and Multilevel Inheritance.

Ambiguity in C++ occurs when a derived class has two base classes and these two base classes

have one common base class. Consider the following figure:

Example:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 13

Ambiguity in single inheritance (write it if asked in question):

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 14

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 15

Ques: Explain virtual base class with example.

 Diagram of multipath inheritance

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 16

If two copies will be there of members in a class then it will generate error, bco'z compiler can't

differentiate between two copies of members.

To remove multiple copies we must use virtual base class.

Example using virtual base class

 #include<iostream.h>

 #include<conio.h>

 class ClassA

 {

 public:

 int a;

 };

 class ClassB : virtual public ClassA

 {

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 17

 public:

 int b;

 };

 class ClassC : virtual public ClassA

 {

 public:

 int c;

 };

 class ClassD : public ClassB, public ClassC

 {

 public:

 int d;

 };

 void main()

 {

 ClassD obj;

 obj.a = 10; //Statement 1

 obj.a = 100; //Statement 2

 obj.b = 20;

 obj.c = 30;

 obj.d = 40;

 cout<< "\n A : "<< obj.a;

 cout<< "\n B : "<< obj.b;

 cout<< "\n C : "<< obj.c;

 cout<< "\n D : "<< obj.d;

 }

Output :

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 18

A : 100

 B : 20

 C : 30

 D : 40

According to the above example, ClassD have only one copy of ClassA and statement 4 will

overwrite the value of a, given in statement 3.

CONSTRUCTOR IN DERIVED CLASSES:

Ques: What do you mean by constructor in derived classes? If a constructor is present in
derived and base class then which constructor function gets executed? Explain with example.

OR

In what order are the class constructor and destructor called when derived class object is
created?

Ans: Base class constructors are always called in the derived class constructors. Whenever you create
derived class object, first the base class default constructor is executed and then the derived class's
constructor finishes execution.

The general form of defining a derived constructor is:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 19

Execution of base class constructor is:

Example:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 20

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 21

Output:

Note:

Here our answer is ended.

If initialization method is asked in exam then only write below answer:

c++ uses the following method for initializing the class objects. In this we have a “initialization list” in the
constructor function. Its form is:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 22

 as the
initialization section. We can provide initial values to the base constructors and also to initialize its own
class members.

Example:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 23

OUTPUT:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 24

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 25

POLYMORPHISM

POINTERS

&

VIRTUAL FUNCTIONS

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 26

Ques: How is polymorphism achieved at run time and compile time?

Ans: Polymorphism means more than one function with same name, with different working.

Polymorphism can be static or dynamic.

 In static polymorphism memory will be allocated at compile-time.

 In dynamic polymorphism memory will be allocated at run-time.

 Both function overloading and operator overloading are an examples of static polymorphism.

 Virtual function is an example of dynamic polymorphism.

 Static polymorphism is also known as early binding and compile-time polymorphism.

 Dynamic polymorphism is also known as late binding and run-time polymorphism.

 Function Overloading: More than one function with same name, with different signature in a

class or in a same scope is called function overloading.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 27

 Operator Overloading: Operator overloading is a way of providing new implementation of

existing operators to work with user-defined data types.

 Virtual function: Virtual function is used in situation, when we need to invoke derived class

function using base class pointer.

Giving new implementation of derived class method into base class and the calling of this new

implemented function with base class's object is done by making base class function as virtual

function.

C++

Function Overriding

Polymorphism means having multiple forms of one thing. In inheritance, polymorphism is done, by
method overriding, when both super and sub class have member function with same declaration but
different definition.

If we inherit a class into the derived class and provide a definition for one of the base class's function
again inside the derived class, then that function is said to be overridden, and this mechanism is called
Function Overriding

Requirements for Overriding

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 28

1. Inheritance should be there. Function overriding cannot be done within a class. For this we

require a derived class and a base class.

2. Function that is redefined must have exactly the same declaration in both base and derived

class, that means same name, same return type and same parameter list.

Example of Function Overriding :

Class base

{

 public:

 void show()

{

 cout<<”base class” ;

}

};

class derived : public base

{

 public:

 void show()

{

 cout<<”derived class”;

}

};

In this example, function show() is overridden in the derived class. Now let us study how these
overridden functions are called in main() function.

Function Call Binding with class Objects

Connecting the function call to the function body is called Binding. When it is done before the program
is run i.e. at compile time, its called Early Binding or Static Binding or Compile-time Binding.

If main() of above class specification is written as:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 29

void main()

{

 base b; //base class object

 derived d; // derived class object

 b.show(); //early binding occurs

}

Output : base class

In the above example, we are calling the overrided function using Base class object. Base class object
will call base version of the function and derived class's object will call the derived version of the
function.

Function Call Binding using Base class Pointer

when we use a Base class's pointer or reference to hold Derived class's object, then Function call
Binding gives following results.

Example: if we write main() section of above base and derived class specification then we have:

void main()

{

 base *b; //base class pointer

 derived d; //derived class object

 b=&d;

 b->show(); //early binding occurs

}

Output : Base class

In the above example, although, the object is of Derived class, still Base class's method is called. This
happens due to Early Binding.

Compiler on seeing Base class's pointer, set call to Base class's show() function, without knowing the
actual object type.

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 30

Ques: When do we need virtual functions? Write down the rules for virtual functions.

OR
What is pure virtual function? Why we need pure virtual function? Write down rules for pure
virtual function.

OR
When do we make a virtual function “pure”? Write down syntax for pure virtual function.

OR
State the rules to be observed when creating virtual function.

Ans: Virtual Functions

Virtual Function is a function in base class, which is overrided in the derived class, and which tells the

compiler to perform Late Binding on this function.

Virtual Keyword is used to make a member function of the base class Virtual.

 When we use Base class's pointer to hold Derived class's object, base class pointer or reference will
always call the base version of the function

Using Virtual Keyword

We can make base class's methods virtual by using virtual keyword while declaring them. Virtual

keyword will lead to Late Binding of that method.

On using Virtual keyword with Base class's function, Late Binding takes place and the derived version

of function will be called, because base class pointer pointes to Derived class object.

Example:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 31

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 32

Output:

Rules for virtual function are:

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM III)

Prepared By: Nidhi Solanki(Assist. Prof.) Page 33

Important Points to Remember

1. Only the Base class Method's declaration needs the Virtual Keyword, not the definition.

2. If a function is declared as virtual in the base class, it will be virtual in all its derived classes.

Ques: What is Pure Virtual Functions

Ans: Pure virtual Functions are virtual functions with no definition. They start with virtual keyword and
ends with=0. Here is the syntax for a pure virtual function,

Virtual void f() = 0;

