M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

INHERITANCE-EXTENDING CLASSES

Prepared By: Nidhi Solanki(Assist. Prof.) Page 1

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Ques: What does inheritance mean? When do we use protected visibility specifier to a class
member?

OR
How do you inherit private member into derive class? Explain with example.

Ans:

> The mechanism of deriving a new class from an old class i= called imheritance, Inhentance
provides the concept of reusahbility. The C++ clesses can be reused using inheritance.

4> The derived class inherits some or all of the properties of the base class.

The class whose properties are inherited by other class is called the Parent or Base or Super class.
And, the class, which inherits properties of other class, is called Child or Derived or Sub class.

NOTE: All members of a class except Private are inherited.

Purpose of Inheritance

1. Code Reusability
2. Method Overriding (Hence, Runtime Polymorphism.)
3. Use of Virtual Keyword

Basic Syntax of Inheritance

class derived-closs-nome : visibility-mode base-class-name

..... } members of derived claoss

e

While defining a derived-class like this, the base-class must be already defined or at least declared
before the base-class declaration.

Prepared By: Nidhi Solanki(Assist. Prof.) Page 2

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Visibility (Access) Mode is used to specify, the mode in which the properties of base-class will be
inherited into derived-class, public, private or protected. The default visibility mode is private.

The colon indicates that the derived-class-name is derived from the base-class-name.

Making a private member inheritable using protected:

A private member of a class cannot be inherited, so it is not available for the derived class.

1. To make a private member inheritable, protected visibility mode is used.

2. A member declared as protected is accessible by the member functions within its class and any
class immediately derived from it. it cannot be accessed by the functions outside these two
classes.

In protected mode inheritance, the public and protected members of Super class become protected
members of Sub class.

Example:

class subclass : protected Superclass

Prepared By: Nidhi Solanki(Assist. Prof.) Page 3

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM Ill)

Mot inharitabla X -

class D1 ; public B

Prisiaha

| Protected

Fublic

class X : public D1 : protected D2

|
-i Public |

= o=
1

= K Mot inheritable

o

| Protected =

class D2 : privaie B

-! Privale |=

FProteciad

Public

e e

Example:

Class Base
{
public:
int a;
protected:
int b;
private:
int c;

J#

class Derived:private Base

void F1()

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 4

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

{
a=10; //Allowed

b = 20; //Allowed
¢ = 30; //Private member of base is not Allowed, Compiler Error
}
%

class Derived2:public Derived

{
void F2()

{

a = 10; //Not Allowed, Compiler Error, a is private member of Derived now
b = 20; //Not Allowed, Compiler Error, b is private member of Derived now
c = 30; //Not Allowed, Compiler Error

}
J#

int main()

{

Derived obj;

obj.a = 10; //Not Allowed, Compiler Error
obj.b = 20; //Not Allowed, Compiler Error
obj.c = 30; //Not Allowed, Compiler Error

SOME MORE ON INHERITANCE, CAREFULLY SEE THE QUESTION, IF FOLLOWING ASKED
THEN ONLY WRITE IT.

Ques: What is visibility modifier? List out them and differentiates with proper example.

Inheritance Visibility Mode/Access Specifier

There are 3 visibility Mode for a class in C++. These access specifiers define how the members of the

class can be accessed. C++ supports the following access modifiers:

1. Private Modifier
2. Protected Modifier
3. Public Modifier

Prepared By: Nidhi Solanki(Assist. Prof.) Page 5

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

1) Public Inheritance

This is the most used inheritance mode. In this the protected member of super class becomes
protected members of sub class and public becomes public.

class Subclass : public Superclass

2) Private Inheritance

In private mode, the protected and public members of super class become private members of derived
class.

class Subclass : Superclass // By default its private inheritance

3) Protected Inheritance

In protected mode, the public and protected members of Super class become protected members of
Sub class.

class subclass : protected Superclass

Own class Derived class main()

Private ﬁ'

{
{ %
®

Protected

Public ‘\f

{
{

Example:
For this write above program

Prepared By: Nidhi Solanki(Assist. Prof.) Page 6

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Types of Inheritance
In C++, we have 5 different types of Inheritance.

7@ Single Inheritance

B« Multiple Inheritance

S8 Hierarchical Inheritance

g Multilevel Inheritance

HaD Hybrid Inheritance
Single Inheritance

In this type of inheritance one derived class inherits from only one base class. It is the most simplest
form of Inheritance.

A Super Class

m

Sub Class

Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two base classes.

A B

Hierarchical Inheritance

In this type of inheritance, multiple derived classes inherit from a single base class.
Prepared By: Nidhi Solanki(Assist. Prof.) Page 7

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

B & D

Multilevel Inheritance

OOP (SYBCA-SEM Ill)

In this type of inheritance the derived class inherits from a class, which in turn inherits from some other

class. The Super class for one is sub class for the other.

A

'
!

Hybrid Inheritance

Hybrid Inheritance is combination of Hierarchical and Multilevel Inheritance.

Example:

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 8

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Ques: What is inheritance? Differentiates multiple and multilevel inheritance with example.

Ans: what is inheritance is given above. For difference write definition then diagram then syntax then
example. Prepare this from book.

Ques: What is inheritance? Explain any one inheritance type with example.

Ans: inheritance intro and types given above, write here

Multiple Inheritance

In this type of inheritance a single derived class may inherit from two or more than two base classes.

I "I [—
| B B2 | B-n

Prepared By: Nidhi Solanki(Assist. Prof.) Page 9

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM Ill)

The syntax of a derived class with multiple base classes is as follows:

class D: visibility B-1, visibility B-2 ...

..... (Body of D)

where, visibility may be either public or private. The base classes are separated by commas.

Example of multiple inheritance:

ciass M
|
protected:
int m;
public:
void get m{int);
I

class N
i
protected:
int n;
public:
void get n{int);
B

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 10

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM Ill)

class P : public M, public N
{
public:
void display(void);
b3

void M :: get m(int x)

void N :: get n(int y)
[N

}

vold P :: display(void)
{

n= ¥

cout =< "*m = * =« q =< *\n";

cout << "p = " << p << "\n";

cout << "m*n = " << m*n << "\n";:
f

int main()

-

i

o

.get m(10};
gat n{20):
p.display();

=

return 0;

Output:

m = 10
n =20
m*n = 200

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 11

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Note: Example (program) and syntax of all inheritance types separately given in textbook, so you can
select any one program from it.

Ques: What is ambiguity in hybrid inheritance? How ambiguities remove from compile time?
Explain with example.

OR
What is inheritance ? When ambiguity occurs in hybrid inheritance. What are solutions to avoid
ambiguity.
Ans: Hybrid Inheritance is combination of Hierarchical and Multilevel Inheritance.

Ambiguity in C++ occurs when a derived class has two base classes and these two base classes

have one common base class. Consider the following figure:

ClassA
|
I
|

v = v
ClassB . ClassC

|
1
1

vy

ClassD

Example:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 12

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

class M
{
publiic:
void display(void)
{

cout == "Class M\n":
ba

class N
{
public:
vold display(void)
{

cout =< "Class Nin":

!

|

Which display{) function is used by the derived class when we inherit these two classes?
We can solve this problem by defining a named instance within the derived class, using the
class resolution operator with the function as shown below:

class P : public M, public N
|
public:
void display(wvoid) I overrides display() of M ond N
{
M :: display();
|

We ean now use the dorived elags as follows:

nt main{)

Popi
p.display();

Ambiquity in single inheritance (write it if asked in question):

Prepared By: Nidhi Solanki(Assist. Prof.) Page 13

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Ambiguity may also arise in single inheritance applications. For instance, consider the
following situation:

class A

{
pubtic:
void display()
{

}

cout << "A\n®;

I
class B : public A
{
public:
void display()
!
cout == "B\n":
!
hi

In this case, the function in the derived class overrides the inherited function and,
therefore, a simple call to display() by B type object will invoke function defined in B only.
However, we may invoke the function defined in A by using the scope resolution operator to
gpecify the class.

Example:

int main()

{
B b; JJ derived class object
b.display(); J/ invokes display() in B
b.A::display(); /f invokes display() in A
b.B::display(); / invokes display() in B
retiurn (:

]
This will produce the following output:

B

Prepared By: Nidhi Solanki(Assist. Prof.) Page 14

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Ques: Explain virtual base class with example.

Multipath inheritance may lead to duplication of inherited members from a ‘grandparent’
base clags. This may be avoided by making the common base class a virtual base class,

Grandparant

—

Parent 2

E Farent 1

i

Child

Diagram of multipath inheritance

The ‘child’ has two direct base classes ‘parent]l’ and ‘parent2’ which themselves

have a common base class ‘grandparent’. The 'child' inherits the traits of ‘grandparent’ via
two separate paths. It can also inherit directly as shown by the broken line. The ‘grandparent’
is sometimes referred to as indirect base elass.

Inheritance by the ‘child’ as shown in Fig. 8.12 might pose some problems. All the public
and protected members of ‘grandparent’ are inherited into ‘child’ twice, first via ‘parentl’
and again via ‘parent?’, This means, ‘child’ would have duplicate sets of the members inherited
from ‘grandparent’. This introduces ambiguity and should be avoided.

The duplication of inherited members due to these multiple paths can be avoided by
making the common base class (aneestor class) as virfual base class while declaring the
direct or intermediate base classes as shown below:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 15

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM Ill)

class A // grondparent
{

HE

class Bl : wirtual public & [parentl

1

HF

class B2 : public wirtual A /! parent2

{

[P

class C : public Bl, public B2 // child

..... /f only one copy of A
..... Jl will be inherited

If two copies will be there of members in a class then it will generate error, bco'z compiler can't

differentiate between two copies of members.

To remove multiple copies we must use virtual base class.

Example using virtual base class

#include<iostream.h>
#include<conio.h>

class ClassA

{
public:
int a;
it
class ClassB : virtual public ClassA
{

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 16

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

public:
int b;
it
class ClassC : virtual public ClassA
{
public:
int c;
5

class ClassD : public ClassB, public ClassC
{

public:
int d;
%
void main()
{
ClassD obj;
obj.a =10; //Statement 1
obj.a=100; //Statement 2
obj.b = 20;
obj.c = 30;
obj.d = 40;
cout<< "\n A : "<< obj.a;
cout<< "\n B : "<< obj.b;
cout<<"\n C : "<< obj.c;
cout<<"\n D : "<< obj.d;
}
Output :

Prepared By: Nidhi Solanki(Assist. Prof.)

OOP (SYBCA-SEM Ill)

Page 17

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

A 100

B:20
C:30
D:40

According to the above example, ClassD have only one copy of ClassA and statement 4 will

overwrite the value of a, given in statement 3.

CONSTRUCTOR IN DERIVED CLASSES:

Ques: What do you mean by constructor in derived classes? If a constructor is present in
derived and base class then which constructor function gets executed? Explain with example.

OR

In what order are the class constructor and destructor called when derived class object is
created?

Ans: Base class constructors are always called in the derived class constructors. Whenever you create

derived class object, first the base class default constructor is executed and then the derived class's
constructor finishes execution.

e In multiple inheritance, the base classes are constructed in the order in which they
appear in the declaration of the derived class

&» In multilevel inheritance, the constructors are executed in the order of inheritance,

The general form of defining a derived constructor is:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 18

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

basel(arglistl), ,.J
baseZ (arglisti).

] f r
?auﬂ[ﬂgh.‘.t"}_ arguments for base(N)
| Body of derived constructore—_—————

- —m— o

Derived-constructor (Arglistl, Arglist2, ... ArglistN, Arglist{D) |

The header line of derived -constructor function contains two parts separated by a colon(:),
The first part provides the declaration of the arguments that are passed Lo the derived-
congfructor and the second part lists the function calle to the base constructors.

bage lfarglist]), bose2iarglist2) ... are function calls to base constructors basel(), base2(),
... and therefore orglist], arglist2, ... etc. represent the actusl parameters that are passed
to the base constructors. Arglist] through ArglistN are the argument declarations for base
constructors basel through baseN, ArglistD provides the parameters that are necessary to
initialize the members of the derived class.

Execution of base class constructor is:

Method of inheritance Ovrder of execution

Class B: public A Al) ; base constructor
! Bi) ; derived constructor
h

class A : public B, public C B(1 ; base{first)

{ Cr) ; baselsecond)
}: Al) ; derived

class A : public B, virtual public C Ci) ; virtual base

| Bi } ; ordinary base
I Al) ; derived

Example:

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 19

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM Ill)

class alpha
i

int x;
publics
alpha{int 1i)
i
X = i

cout == "alpha initialized “wn";
l
voild show x({woid)
[cout =< ®"x = * << x << *\n%"; }
| §°

class beta
{
float w3
public:
beta(float j)
i
¥ = Jz
cout =< "heta initialized “Wn";
1]
1
void show y({woid)
[Eﬂ.u'r_ << "y m ® < y =< "I,.n";]-

iz

class gamma: public beta, public alpha
{
int m, mn;
pubtic:
gamma(int a, float b, int c, int d):
alphala), beta(b)
S
m= 3
n = d
cout << "gamma initialized “Wn";

void show mn{void)
; £l
cout << "m = " << o= "p"
<< "n = " << g Wpt.

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 20

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

int main{}
|
gamma g{5, 10.75, 20, 30);
cout << "\n";
q.show x():
g.i"'l.'l-_-_'r:.!l;.
g.show mni);

return 0

Output:

beta initialized
alpha initialized
gamra initialized

= 5
10.75
= 20

= 30

o S o oW
i

Note:

beta is initialized first, although it appears second in the derived constructor. This 15
because it has been declared first in the derived class header line. Algo, note that alpha(a)
and beta(b) are function calls, Therefore, the parameters should not include types.

Here our answer is ended.
If initialization method is asked in exam then only write below answer:

C++ supports another method of initializing the class objects. This method uses what is
known as initialization list in the constructor function. This takes the following form:

c++ uses the following method for initializing the class objects. In this we have a “initialization list” in the
constructor function. Its form is:

constructor (orglist) : intialization-section
{

assignment-section

b

Prepared By: Nidhi Solanki(Assist. Prof.) Page 21

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

The assignment-section is nothing but the body of the constructor function and is used to

a=sign initial values to its data members. The part immediately following the colon i8 known as the

initialization section. We can provide initial values to the base constructors and also to initialize its own
class members.

Example:

Prepared By: Nidhi ¢ S e Page 22

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

OUTPUT:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 23

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

beta constructed
alpha conmstructed
gamma constructed

Display member values

o=
-

LT COT X
£ RN A

Prepared By: Nidhi Solanki(Assist. Prof.) Page 24

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

POLYMORPHISM
POINTERS
&

VIRTUAL FUNCTIONS

Prepared By: Nidhi Solanki(Assist. Prof.) Page 25

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Ques: How is polymorphism achieved at run time and compile time?

Ans: Polymorphism means more than one function with same name, with different working.

Polymorphism can be static or dynamic.
» In static polymorphism memory will be allocated at compile-time.
» In dynamic polymorphism memory will be allocated at run-time.
» Both function overloading and operator overloading are an examples of static polymorphism.
» Virtual function is an example of dynamic polymorphism.

» Static polymorphism is also known as early binding and compile-time polymorphism.

» Dynamic polymorphism is also known as late binding and run-time polymorphism.

Types of Polymorphism

v v

Compile-time / Static poly. / Early binding

Run-time / Dynamic poly. / Late binding

Ex:. Function Cverloading Ex® Virtual function
Operator Overloading

o Function Overloading: More than one function with same name, with different signature in a

class or in a same scope is called function overloading.

Prepared By: Nidhi Solanki(Assist. Prof.) Page 26

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

o Operator Overloading: Operator overloading is a way of providing new implementation of

existing operators to work with user-defined data types.

Functions and operators overloading are examples of compile time polymorphism. The
overloaded member functions are selected for invoking by matching arguments, both
type and number. The compiler knows this information at the compile time and,

therefore, compiler is able to select the appropriate function for a particular call at the
compile time itself. This is called early or static binding or static linking. It means that

an object is bound to its function call at compile time.

o Virtual function: Virtual function is used in situation, when we need to invoke derived class

function using base class pointer.

Giving new implementation of derived class method into base class and the calling of this new
implemented function with base class's object is done by making base class function as virtual

function.

In run time polymorphism, an appropriate member function 15 selected while the program
is running. C++ supports run time polymorphism with the help of virtual functions. It
is called late or dynamic binding because the appropriate function is selected dynamically
at run time. Dynamic binding requires use of pointers to objects and is one of the
powerful features of C++.

Function Overriding

Polymorphism means having multiple forms of one thing. In inheritance, polymorphism is done, by
method overriding, when both super and sub class have member function with same declaration but
different definition.

If we inherit a class into the derived class and provide a definition for one of the base class's function
again inside the derived class, then that function is said to be overridden, and this mechanism is called
Function Overriding

Requirements for Overriding

Prepared By: Nidhi Solanki(Assist. Prof.) Page 27

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

1. Inheritance should be there. Function overriding cannot be done within a class. For this we
require a derived class and a base class.
2. Function that is redefined must have exactly the same declaration in both base and derived

class, that means same name, same return type and same parameter list.

Example of Function Overriding :

Class base

{

public:

void show()

{

cout<<’base class” ;

}

|5

class derived : public base
{

public:

void show()

{

cout<<”derived class”;
}

|5

In this example, function show() is overridden in the derived class. Now let us study how these
overridden functions are called in main() function.

Function Call Binding with class Objects

Connecting the function call to the function body is called Binding. When it is done before the program
is run i.e. at compile time, its called Early Binding or Static Binding or Compile-time Binding.

If main() of above class specification is written as:
Prepared By: Nidhi Solanki(Assist. Prof.) Page 28

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

void main()

{

base b; //base class object
derived d; // derived class object

b.show(); //early binding occurs

}

Output : base class

In the above example, we are calling the overrided function using Base class object. Base class object
will call base version of the function and derived class's object will call the derived version of the
function.

Function Call Binding using Base class Pointer

when we use a Base class's pointer or reference to hold Derived class's object, then Function call
Binding gives following results.

Example: if we write main() section of above base and derived class specification then we have:
void main()
{
base *b; //base class pointer
derived d; //derived class object
b=&d;
b->show(); //early binding occurs
}
Output : Base class

In the above example, although, the object is of Derived class, still Base class's method is called. This
happens due to Early Binding.

Compiler on seeing Base class's pointer, set call to Base class's show() function, without knowing the
actual object type.

Prepared By: Nidhi Solanki(Assist. Prof.) Page 29

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Ques: When do we need virtual functions? Write down the rules for virtual functions.

OR
What is pure virtual function? Why we need pure virtual function? Write down rules for pure

virtual function.

OR
When do we make a virtual function “pure”? Write down syntax for pure virtual function.

OR
State the rules to be observed when creating virtual function.

Ans: Virtual Functions

Virtual Function is a function in base class, which is overrided in the derived class, and which tells the
compiler to perform Late Binding on this function.

Virtual Keyword is used to make a member function of the base class Virtual.

When a function is made virtual, C++ determines which function to use at run time
based on the type of ohject pointed to by the base pointer, rather than the type of the
pointer. By making the base pointer to point to different objects, we can execute different
versions of the virtual function.

Run time polymorphism is achieved only when a virtual function is accessed through
a pointer to the base class. It cannot be achieved using object name along with the dot
operator to access virtual function.

When we use Base class's pointer to hold Derived class's object, base class pointer or reference will
always call the base version of the function

Using Virtual Keyword

We can make base class's methods virtual by using virtual keyword while declaring them. Virtual
keyword will lead to Late Binding of that method.

On using Virtual keyword with Base class's function, Late Binding takes place and the derived version
of function will be called, because base class pointer pointes to Derived class object.

Example:

Prepared By: Nidhi Solanki(Assist. Prof.) Page 30

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH

OOP (SYBCA-SEM Ill)

—Hinchude <iostreams
=T

using namespace std;

class Base
{
public:
void display() {cout << “\n Display base “;}
virtual void show() {cout << "\n show base™;}
I
class Derived : public Base
i
public:
void display() {cout << "\n Display derived";]
void show() [cout << "\n show derived":)

int main()
Base B;

Derived Dv;
Base *bptr;:

cout <<= “\n bptr points to Base \n";

bptr = &B;
bptr <= display(); ff calls Base version
bptr -» show(); /f calls Base version

cout <= "\n\n bptr points to Derivedin":
bptr = &D;
bptr -= display(); // calls Base version

bptr -= show(): J/fcalls Derived version

return 0;

Prepared By: Nidhi Solanki(Assist. Prof.)

Page 31

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

Output:
bptr points to Base

Display base
Show base

bptr points to Derived

Display base
Show derived

Rules for virtual function are:

The wirtual functions must be members of some class.

They cannot be static members.

They are accessed by using object pointers.

A virtual function can be a friend of another class.

A virtual function in a base class must be defined, even though it may not be
used.

6. The prototypes of the base class version of a virtual function and all the derived
class versions must be identical. If two functions with the same name have differ-
ent prototypes, C++ considers them as overloaded functions, and the virtual func-

tion mechanism is ignored.

7. We cannot have virtual constructors, but we can have virtual destructors.

8. While a base pointer can point to any type of the derived object, the reverse is not
true. That is to say, we cannot use a pointer to a derived class to access an object of
the base type.

N

Prepared By: Nidhi Solanki(Assist. Prof.) Page 32

M.K. INSTITUTE OF COMPUTER STUDIES, BHARUCH OOP (SYBCA-SEM l11)

9. When a base pointer points to a derived class, incrementing or decrementing it will
not make it to point to the next object of the derived class. It iz incremented or
decremented only relative to its base type. Therefore, we should not use this method
to move the pointer to the next object.

10, [Ifa virtual function is defined in the base class, it need not be necessarily redefined
in the derived clazs. In such cases, calls will invoke the base function.

Important Points to Remember

1. Only the Base class Method's declaration needs the Virtual Keyword, not the definition.

2. If a function is declared as virtual in the base class, it will be virtual in all its derived classes.

Ques: What is Pure Virtual Functions

Ans: Pure virtual Functions are virtual functions with no definition. They start with virtual keyword and
ends with=0. Here is the syntax for a pure virtual function,

Virtual void f() = 0;

Prepared By: Nidhi Solanki(Assist. Prof.) Page 33

